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a b s t r a c t

We introduce the notion of Reeb invariant Ricci tensor for real hypersurfaces in the complex
quadricQm

= SOm+2/SOmSO2 . The Reeb invariant Ricci tensor implies that the unit normal
vector field N becomes A-principal or A-isotropic. Then according to each case, we give a
complete classification of real hypersurfaces in Qm

= SOm+2/SOmSO2 with Reeb invariant
Ricci tensor.
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1. Introduction

When we consider some Hermitian symmetric spaces of rank 2, we can usually give examples of Riemannian symmetric
spaces SUm+2/S(U2Um) and SU2,m/S(U2Um), which are said to be complex two-plane Grassmannians and complex hyperbolic
two-plane Grassmannians respectively (see [1–4] and [5]). These are viewed as Hermitian symmetric spaces and quater-
nionic Kähler symmetric spaces equipped with the Kähler structure J and the quaternionic Kähler structure J and they have
rank 2.

As another kind of Hermitian symmetric space with rank 2 of compact type different from the above ones, we can give an
example of complex quadricQm

= SOm+2/SOmSO2, which is a complex hypersurface in complex projective spaceCPm+1 (see
Klein [6], and Smyth [7]). The complex quadric can also be regarded as a kind of real Grassmann manifolds of compact type
with rank 2 (see Kobayashi and Nomizu [8]). Accordingly, the complex quadric admits two important geometric structures,
a complex conjugation structure A and a Kähler structure J , which anti-commute with each other, that is, AJ = −JA. Then for
m ≥ 2 the triple (Qm, J, g) is a Hermitian symmetric space of compact type with rank 2 and its maximal sectional curvature
is equal to 4 (see Klein [6] and Reckziegel [9]).

In the complex projective space CPm+1 and the quaternionic projective space QPm+1 some classifications related
to commuting Ricci tensor were investigated by Kimura [10,11], Pérez [12] and Pérez and Suh [13,14] respectively.
The classification problems of the complex 2-plane Grassmannian G2(Cm+2) = SUm+2/S(U2Um) with certain geometric
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conditions were mainly discussed in Suh [3,15] and [4], where the classification of contact hypersurfaces, parallel Ricci tensor
and harmonic curvature of a real hypersurface in G2(Cm+2) were extensively studied. Moreover, in [4] we have asserted
that the Reeb flow on a real hypersurface in SU2,m/S(U2Um) is isometric if and only if M is an open part of a tube around a
totally geodesic SU2,m−1/S(U2Um−1) ⊂ SU2,m/S(U2Um) . Suh [5] strengthened this result to hypersurfaces in G2(Cm+2) with
commuting Ricci tensor and gave a characterization of real hypersurfaces in G2(Cm+2) = SUm+2/S(UmU2) as follows:

Theorem A. Let M be a Hopf real hypersurface in G2(Cm+2) with commuting Ricci tensor, m ≥ 3. Then M is locally congruent to
a tube of radius r over a totally geodesic G2(Cm+1) in G2(Cm+2).

On the other hand, Suh andWoo [16] have investigated a classification problem of real hypersurfaces in SU2,m/S(U2 ·Um)
with parallel Ricci tensor. Moreover, Suh [5] studied another classification for Hopf hypersurfaces in complex hyperbolic
two-plane Grassmannians SU2,m/S(U2Um) with commuting Ricci tensor as follows:

Theorem B. Let M be a Hopf hypersurface in SU2,m/S(U2 ·Um)with commuting Ricci tensor, m ≥ 3. Then M is locally congruent
to an open part of a tube around some totally geodesic SU2,m−1/S(U2 · Um−1) in SU2,m/S(U2 · Um) or a horosphere whose center
at infinity with JX ∈ JX is singular.

It is known that the Reeb flow on a real hypersurface in G2(Cm+2) is isometric if and only if M is an open part of a
tube around a totally geodesic G2(Cm+1) ⊂ G2(Cm+2) in [5] and [17]. Moreover, in [4] we asserted that the Reeb flow
on a real hypersurface in SU2,m/S(U2Um) is isometric if and only if M is an open part of a tube around a totally geodesic
SU2,m−1/S(U2Um−1) ⊂ SU2,m/S(U2Um). Here, the Reeb flow on real hypersurfaces in SUm+2/S(UmU2) or SU2,m/S(U2Um) is said
to be isometric if the shape operator commutes with the structure tensor. Then naturally it can be easily checked that the
Ricci tensor commutes with the structure tensor. In the paper [18] due to Suh and Hwang, we investigated this problem for
real hypersurfaces in the complex quadric Qm

= SOm+2/SOmSO2 and obtained the following result:

Theorem C. Let M be a Hopf real hypersurface in the complex quadric Qm, m ≥ 4, with commuting Ricci tensor. If the shape
operator commutes with the structure tensor on the distributionQ⊥, then M is locally congruent to an open part of a tube around
totally geodesic CPk in Q 2k, m = 2k or M has 3 distinct constant principal curvatures given by

α =

√
2(m − 3), γ = 0, λ = 0, and µ = −

2
√
2(m − 3)

or

α =

√
2
3
(m − 3), γ = 0, λ = 0, and µ = −

√
6

√
m − 3

with corresponding principal curvature spaces respectively

Tα = [ξ ], Tγ = [Aξ, AN], φ(Tλ) = Tµ, and dim Tλ = dim Tµ = m − 2.

Now at each point z ∈ M let us consider a maximal A-invariant subspace Qz of TzM , z ∈ M , defined by

Qz = {X ∈ TzM | AX ∈ TzM for all A ∈ Az}

of TzM , z ∈ M . Thus for a case where the unit normal vector fieldN isA-isotropic it can be easily checked that the orthogonal
complement Q⊥

z = Cz ⊖ Qz , z ∈ M , of the distribution Q in the complex subbundle C, becomes Q⊥
z = Span{Aξ, AN}.

Here it can be easily checked that the vector fields Aξ and AN belong to the tangent space TzM , z ∈ M if the unit normal
vector field N becomes A-isotropic. Thus for a case where the unit normal vector field N is A-isotropic it can be easily
checked that the orthogonal complementQ⊥

z = Cz ⊖Qz , z ∈ M , of the distributionQ in the complex subbundle C, becomes
Q⊥

z = Span{Aξ, AN}. Moreover, the vector fields Aξ and AN belong to the tangent space TzM , z ∈ M if the unit normal vector
field N becomes A-isotropic. Then motivated by the above result, in [17] we gave another theorem for real hypersurfaces in
the complex quadric Qm with parallel Ricci tensor and A-isotropic unit normal.

Apart from the complex structure J there is another distinguished geometric structure on Qm, namely a parallel rank two
vector bundleAwhich contains an S1-bundle of real structures, that is, complex conjugations A on the tangent spaces of Qm.
This geometric structure determines a maximal A-invariant subbundleQ of the tangent bundle TM of a real hypersurfaceM
in Qm.

Recall that a nonzero tangent vector W ∈ T[z]Qm is called singular if it is tangent to more than one maximal flat in Qm.
There are two types of singular tangent vectors for the complex quadric Qm:

1. If there exists a conjugation A ∈ A such that W ∈ V (A), then W is singular. Such a singular tangent vector is called
A-principal.

2. If there exist a conjugation A ∈ A and orthonormal vectors X, Y ∈ V (A) such thatW/∥W∥ = (X + JY )/
√
2, thenW is

singular. Such a singular tangent vector is called A-isotropic.

When we consider a hypersurface M in the complex quadric Qm, under the assumption of some geometric properties
the unit normal vector field N of M in Qm can be divided into two classes if either N is A-isotropic or A-principal (see [19]
and [17]). In the first case where N is A-isotropic, we have shown in [19] thatM is locally congruent to a tube over a totally
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geodesic CPk in Q 2k. In the second case, when the unit normal N is A-principal, we proved that a contact hypersurfaceM in
Qm is locally congruent to a tube over a totally geodesic and totally real submanifold Sm in Qm (see [17]).

In the study of complex two-plane Grassmannian G2(Cm+2) or complex hyperbolic two-plane Grassmannian SU2,m/S(U2 ·

Um) we studied hypersurfaces with parallel Ricci tensor and gave non-existence properties respectively (see [3] and [16]).
In [17] we also considered the notion of parallel Ricci tensor, that is, ∇Ric = 0, for hypersurfaces M in Qm. But from the
assumption of Ricci parallel, it was impossible to derive the fact that either the unit normal N is A-isotropic or A-principal.
So in [17] we gave a classification with the further assumption of A-isotropic.

But fortunately whenwe consider Ricci commuting, that is, Ric ·φ = φ ·Ric for hypersurfacesM in Qm, we can assert that
the unit normal vector field N becomes either A-isotropic or A-principal (see Suh and Hwang [18]). Then motivated by such
a result and using Theorem C, in this paper we give a complete classification for real hypersurfaces in the complex quadric
Qm with Reeb invariant Ricci tensor, that is, LξRic = 0 as follows:

Main Theorem. Let M be a Hopf real hypersurface in the complex quadric Qm, m ≥ 4, with Reeb invariant Ricci tensor. If the
shape operator commutes with the structure tensor on the distribution Q⊥, then M is locally congruent to an open part of a tube
around totally geodesic CPk in Q 2k, m = 2k or M has 3 distinct constant principal curvatures given by

α =

√
2(m − 3), γ = 0, λ = 0, and µ = −

2
√
2(m − 3)

or

α =

√
2
3
(m − 3), γ = 0, λ = 0, and µ = −

√
6

√
m − 3

with corresponding principal curvature spaces respectively

Tα = [ξ ], Tγ = [Aξ, AN], φ(Tλ) = Tµ, and dim Tλ = dim Tµ = m − 2.

Remark 1.1. In Main Theorem the second and third ones can be explained geometrically as follows: the real hypersurfaceM
is locally congruent toM1×C, whereM1 is a tube of radius r =

1
√
2
tan−1

√
m − 3 or respectively, of radius r =

1
√
2
tan−1

√
m−3
3 ,

over anm−1-dimensional unit sphere Sm−1 inQm−1. Then, by the result due to Suh [17],M1 becomes a contact hypersurface
defined by Sφ + φS = kφ, k = −

2
√
2(m−3) , and k = −

√
6

√
m−3

respectively. By using the Segre embedding, the embedding
M1×C ⊂ Qm−1

×C ⊂ Qm is defined by (z0, z1, · · · , zm, w) → (z0w, z1w, · · · , zmw, 0). Here (z0w)2+(z1w)2+· · ·+(zmw)2 =

(z20 + · · · + z2m)w
2

= 0, where {z0, · · · , zm} denotes a coordinate system in Qm−1 satisfying z20 + · · · + z2m = 0.

2. The complex quadric

For more background to this section we refer to [6,8,9,17,19] and [20]. The complex quadric Qm is the complex
hypersurface in CPm+1 which is defined by the equation z20 + · · · + z2m+1 = 0, where z0, . . . , zm+1 are homogeneous
coordinates on CPm+1. We equip Qm with the Riemannian metric g which is induced from the Fubini–Study metric ḡ on
CPm+1 with constant holomorphic sectional curvature 4. The Fubini–Study metric ḡ is defined by ḡ(X, Y ) = Φ(JX, Y )
for any vector fields X and Y on CPm+1 and a globally closed (1, 1)-form Φ given by Φ = −4i∂∂̄ logfj on an open set
Uj = {[z0, z1, · · · , zm+1

] ∈ CPm+1
|z j ̸= 0}, where the function fj denotes fj =

∑m+1
k=0 t

k
j t̄

k
j , and tkj =

zk

zj
for j, k = 0, · · · ,m+ 1.

Then naturally the Kähler structure on CPm+1 induces canonically a Kähler structure (J, g) on the complex quadric Qm.
The complex projective spaceCPm+1 is a Hermitian symmetric space of the special unitary group SUm+2, namelyCPm+1

=

SUm+2/S(Um+1U1). We denote by o = [0, . . . , 0, 1] ∈ CPm+1 the fixed point of the action of the stabilizer S(Um+1U1). The
special orthogonal group SOm+2 ⊂ SUm+2 acts onCPm+1 with cohomogeneity one. The orbit containing o is a totally geodesic
real projective space RPm+1

⊂ CPm+1. The second singular orbit of this action is the complex quadric Qm
= SOm+2/SOmSO2.

This homogeneous spacemodel leads to the geometric interpretation of the complex quadricQm as the Grassmannmanifold
G+

2 (R
m+2) of oriented 2-planes in Rm+2. It also gives a model of Qm as a Hermitian symmetric space of rank 2. The complex

quadric Q 1 is isometric to a sphere S2 with constant curvature, and Q 2 is isometric to the Riemannian product of two 2-
spheres with constant curvature. For this reason we will assumem ≥ 3 from now on.

In another way, the complex projective space CPm+1 is defined by using the Hopf fibration

π : S2m+3
→ CPm+1, z → [z],

which is said to be a Riemannian submersion. Then naturally we can consider the following diagram for the complex quadric
Qm as follows:

Q̃ = π−1(Q )
ĩ

−−−−→ S2m+3
⊂Cm+2

π

⏐⏐↓ π

⏐⏐↓
Q = Qm i

−−−−→ CPm+1
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The submanifold Q̃ of codimension 2 in S2m+3 is called the Stiefel manifold of orthonormal 2-frames in Rm+2, which is
given by

Q̃ =

{
x + iy ∈ Cm+2

|g(x, x) = g(y, y) =
1
2
and g(x, y) = 0

}
,

where g(x, y) =
∑m+2

i=1 xiyi for any x = (x1, . . . , xm+2) and y = (y1, . . . , ym+2) ∈ Rm+2. Then the tangent space is decomposed
as TzS2m+3

= Hz ⊕ Fz and Tz Q̃ = Hz(Q ) ⊕ Fz(Q ) at z = x + iy ∈ Q̃ respectively, where the horizontal subspaces Hz and
Hz(Q ) are given by Hz = (Cz)⊥ and Hz(Q ) = (Cz ⊕ Cz̄)⊥, and Fz and Fz(Q ) are fibers which are isomorphic to each other.
Here Hz(Q ) becomes a subspace of Hz of real codimension 2 and orthogonal to the two unit normals −z̄ and −J z̄. Explicitly,
at the point z = x + iy ∈ Q̃ it can be described as

Hz = {u + iv ∈ Cm+2
| g(x, u) + g(y, v) = 0, g(x, v) = g(y, u)}

and

Hz(Q ) = {u + iv ∈ Hz | g(u, x) = g(u, y) = g(v, x) = g(v, y) = 0},

where Cm+2
= Rm+2

⊕ iRm+2, and g(u, x) =
∑m+2

i=1 uixi for any u = (u1, . . . , um+2), x = (x1, . . . , xm+2) ∈ Rm+2.
These spaces can be naturally projected by the differential map π∗ as π∗Hz = Tπ (z)CPm+1 and π∗Hz(Q ) = Tπ (z)Q

respectively. This gives that at the point π (z) = [z] the tangent subspace T[z]Qm becomes a complex subspace of T[z]CPm+1

with complex codimension 1 and has two unit normal vector fields −z̄ and −J z̄ (see Reckziegel [9]).
Then let us denote by Az̄ the shape operator of Qm in CPm+1 with respect to the unit normal z̄. It is defined by Az̄w =

∇̄w z̄ = w̄ for a complex Euclidean connection ∇̄ induced fromCm+2 and all w ∈ T[z]Qm. That is, the shape operator Az̄ is just
a complex conjugation restricted to T[z]Qm. Moreover, it satisfies the following for any w ∈ T[z]Qm and any λ ∈ S1 ⊂ C

A2
λz̄w = Aλz̄Aλz̄w = Aλz̄λw̄

= λAz̄λw̄ = λ∇̄λw̄ z̄ = λλ̄ ¯̄w

= |λ|
2w = w.

Accordingly, A2
λz̄ = I for any λ ∈ S1. So the shape operator Az̄ becomes an anti-commuting involution such that A2

z̄ = I and
AJ = −JA on the complex vector space T[z]Qm and

T[z]Qm
= V (Az̄) ⊕ JV (Az̄),

where V (Az̄) = Rm+2
∩ T[z]Qm is the (+1)-eigenspace and JV (Az̄) = iRm+2

∩ T[z]Qm is the (−1)-eigenspace of Az̄ . That is,
Az̄X = X and Az̄ JX = −JX , respectively, for any X ∈ V (Az̄).

Geometrically this means that the shape operator Az̄ defines a real structure on the complex vector space T[z]Qm,
or equivalently, is a complex conjugation on T[z]Qm. Since the real codimension of Qm in CPm+1 is 2, this induces an
S1-subbundle A of the endomorphism bundle End(TQm) consisting of complex conjugations.

There is a geometric interpretation of these conjugations. The complex quadric Qm can be viewed as the complexification
of them-dimensional sphere Sm. Through each point [z] ∈ Qm there exists a one-parameter family of real forms ofQm which
are isometric to the sphere Sm. These real forms are congruent to each other under action of the center SO2 of the isotropy
subgroup of SOm+2 at [z]. The isometric reflection of Qm in such a real form Sm is an isometry, and the differential at [z] of
such a reflection is a conjugation on T[z]Qm. In this way the family A of conjugations on T[z]Qm corresponds to the family
of real forms Sm of Qm containing [z], and the subspaces V (A) ⊂ T[z]Qm correspond to the tangent spaces T[z]Sm of the real
forms Sm of Qm.

The Gauss equation for Qm
⊂ CPm+1 implies that the Riemannian curvature tensor R̄ of Qm can be described in terms of

the complex structure J and the complex conjugations A ∈ A:

R̄(X, Y )Z = g(Y , Z)X − g(X, Z)Y + g(JY , Z)JX − g(JX, Z)JY − 2g(JX, Y )JZ
+ g(AY , Z)AX − g(AX, Z)AY + g(JAY , Z)JAX − g(JAX, Z)JAY .

Note that J and each complex conjugation A anti-commute, that is, AJ = −JA for each A ∈ A.
For every unit tangent vectorW ∈ T[z]Qm there exist a conjugation A ∈ A and orthonormal vectors X, Y ∈ V (A) such that

W = cos(t)X + sin(t)JY

for some t ∈ [0, π/4]. The singular tangent vectors correspond to the values t = 0 and t = π/4. WhenW = X for X ∈ V (A),
t = 0, there exist many kinds of maximal 2-flats RX + RZ for Z ∈ V (A) orthogonal to X ∈ V (A). So the tangent vector X is
said to be singular. When W = (X + JY )/

√
2 for t =

π
4 , it becomes also a singular tangent vector, which belongs to many

kinds of maximal 2-flats given by R(X + JY ) + RZ for any Z ∈ V (A) orthogonal to X ∈ V (A) or R(X + JY ) + RJZ for any
JZ ∈ JV (A). If 0 < t < π/4 then the unique maximal flat containingW is RX ⊕ RJY .
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3. Some general equations

Let M be a real hypersurface in Qm and denote by (φ, ξ, η, g) the induced almost contact metric structure. Note that
ξ = −JN , where N is a (local) unit normal vector field of M and η the corresponding 1-form defined by η(X) = g(ξ, X) for
any tangent vector field X on M . The tangent bundle TM of M splits orthogonally into TM = C ⊕ Rξ , where C = ker(η) is
the maximal complex subbundle of TM . The structure tensor field φ restricted to C coincides with the complex structure J
restricted to C, and φξ = 0.

At each point z ∈ M we define a maximal A-invariant subspace of TzM , z ∈ M as follows:

Qz = {X ∈ TzM | AX ∈ TzM for all A ∈ Az}.

Thenwewant to introduce an important lemmawhichwill be used in the proof of ourmain Theorem in the introduction.

Lemma 3.1 ([19]). For each z ∈ M we have

(i) If Nz is A-principal, then Qz = Cz .
(ii) If Nz is not A-principal, there exist a conjugation A ∈ A and orthonormal vectors X, Y ∈ V (A) such that Nz =

cos(t)X + sin(t)JY for some t ∈ (0, π/4]. Then we have Qz = Cz ⊖ C(JX + Y ).

We now assume thatM is a Hopf hypersurface. Then the Reeb vector field ξ = −JN satisfies the following

Sξ = αξ,

where S denotes the shape operator of the real hypersurfaces M with the smooth function α = g(Sξ, ξ ) on M . When we
consider the transform JX by the Kähler structure J on Qm for any vector field X onM in Qm, we may put

JX = φX + η(X)N

for a unit normal N to M . Then we now consider the equation of Codazzi

g((∇XS)Y − (∇Y S)X, Z) = η(X)g(φY , Z) − η(Y )g(φX, Z) − 2η(Z)g(φX, Y )
+ g(X, AN)g(AY , Z) − g(Y , AN)g(AX, Z) + g(X, Aξ )g(JAY , Z) − g(Y , Aξ )g(JAX, Z). (3.1)

Putting Z = ξ in (3.1) we get

g((∇XS)Y − (∇Y S)X, ξ ) = −2g(φX, Y ) + g(X, AN)g(Y , Aξ ) − g(Y , AN)g(X, Aξ )
− g(X, Aξ )g(JY , Aξ ) + g(Y , Aξ )g(JX, Aξ ).

On the other hand, we have

g((∇XS)Y − (∇Y S)X, ξ ) = g((∇XS)ξ, Y ) − g((∇Y S)ξ, X)
= (Xα)η(Y ) − (Yα)η(X) + αg((Sφ + φS)X, Y ) − 2g(SφSX, Y ).

Comparing the previous two equations and putting X = ξ yields

Yα = (ξα)η(Y ) − 2g(ξ, AN)g(Y , Aξ ) + 2g(Y , AN)g(ξ, Aξ ).

Reinserting this into the previous equation yields

g((∇XS)Y − (∇Y S)X, ξ ) = −2g(ξ, AN)g(X, Aξ )η(Y ) + 2g(X, AN)g(ξ, Aξ )η(Y )
+ 2g(ξ, AN)g(Y , Aξ )η(X) − 2g(Y , AN)g(ξ, Aξ )η(X)
+ αg((φS + Sφ)X, Y ) − 2g(SφSX, Y ).

Altogether this implies

0 = 2g(SφSX, Y ) − αg((φS + Sφ)X, Y ) − 2g(φX, Y )
+ g(X, AN)g(Y , Aξ ) − g(Y , AN)g(X, Aξ )
− g(X, Aξ )g(JY , Aξ ) + g(Y , Aξ )g(JX, Aξ )
+ 2g(ξ, AN)g(X, Aξ )η(Y ) − 2g(X, AN)g(ξ, Aξ )η(Y )
− 2g(ξ, AN)g(Y , Aξ )η(X) + 2g(Y , AN)g(ξ, Aξ )η(X).

(3.2)

At each point z ∈ M we can choose A ∈ Az such that

N = cos(t)Z1 + sin(t)JZ2

for some orthonormal vectors Z1, Z2 ∈ V (A) and 0 ≤ t ≤
π
4 (see Proposition 3 in [9]). Note that t is a function on M . First of

all, since ξ = −JN , we have

AN = cos(t)Z1 − sin(t)JZ2,
ξ = sin(t)Z2 − cos(t)JZ1,

Aξ = sin(t)Z2 + cos(t)JZ1.
(3.3)
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This implies g(ξ, AN) = 0 and hence

0 = 2g(SφSX, Y ) − αg((φS + Sφ)X, Y ) − 2g(φX, Y )
+ g(X, AN)g(Y , Aξ ) − g(Y , AN)g(X, Aξ )
− g(X, Aξ )g(JY , Aξ ) + g(Y , Aξ )g(JX, Aξ )
− 2g(X, AN)g(ξ, Aξ )η(Y ) + 2g(Y , AN)g(ξ, Aξ )η(X).

(3.4)

4. Reeb invariance and a key lemma

By the equation of Gauss, the curvature tensor R(X, Y )Z for a real hypersurfaceM inQm induced from the curvature tensor
R̄ of Qm can be described in terms of the complex structure J and the complex conjugation A ∈ A as follows:

R(X, Y )Z = g(Y , Z)X − g(X, Z)Y + g(φY , Z)φX − g(φX, Z)φY − 2g(φX, Y )φZ
+ g(AY , Z)AX − g(AX, Z)AY + g(JAY , Z)JAX − g(JAX, Z)JAY + g(SY , Z)SX − g(SX, Z)SY

for any X, Y , Z ∈ TzM , z ∈ M .
Now let us put

AX = BX + ρ(X)N,

for any vector field X ∈ TzQm, z ∈ M , ρ(X) = g(AX,N), where BX and ρ(X)N respectively denote the tangential and the
normal component of the vector field AX . Then Aξ = Bξ + ρ(ξ )N and ρ(ξ ) = g(Aξ,N) = 0. Then it follows that

AN = AJξ = JAξ = −J(Bξ + ρ(ξ )N)
= −(φBξ + η(Bξ )N).

The equation gives g(AN,N) = −η(Bξ ) and g(AN, ξ ) = 0. From this, together with the definition of the Ricci tensor, we have

Ric(X) = (2m − 1)X − 3η(X)ξ − g(AN,N)AX + g(AX,N)AN + g(AX, ξ )Aξ + (TrS)SX − S2X . (4.1)

On the other hand, it is known that the Ricci tensor is Reeb invariant, that is, Lξ S = 0 if and only if

(φS − Sφ) · Ric = Ric · (φS − Sφ). (4.2)

Here we want to give a remark as follows:

Remark 4.1. Let M be a real hypersurface over a totally geodesic CPk
⊂ Q 2k, m = 2k. Then by a theorem due to Suh [17]

the structure tensor commutes with the shape operator, that is, Sφ = φS. Moreover, the unit normal vector field N becomes
A-isotropic. This gives η(Bξ ) = g(Aξ, ξ ) = 0. So it naturally satisfies the formula (4.2), that is, Ricci commuting.

On the other hand, from (4.3) we assert an important lemma as follows:

Lemma 4.2. Let M be a Hopf real hypersurface in Qm, m ≥ 3, with Reeb invariant Ricci tensor. Then the unit normal vector field
N becomes singular, that is, N is A-isotropic or A-principal.

Proof. By putting X = ξ in (4.2) we get

(φS − Sφ)Ric(ξ ) = 0. (4.3)

Here from (4.1) the Ricci curvature is given by

Ric(ξ ) = (2m − 4)ξ − g(AN,N)Aξ + g(Aξ, ξ )Aξ + (trS)αξ − α2ξ,

where g(Aξ, ξ ) = g(AJN, JN) = −g(JAN, JN) = −g(AN,N). Substituting this one into (4.3) gives

g(AN,N)(φS − Sφ)Aξ = 0. (4.4)

The first case gives that g(AN,N) = g(Aξ, ξ ) = cos 2t = 0, that is, t =
π
4 . This implies that the unit normal N becomes

N =
X+JY
√
2
, which means that N is A-isotropic.

The second case gives that

φSAξ = SφAξ . (4.5)

Similarly, we also know that

φS(AN)T = Sφ(AN)T , (4.6)

where (AN)T denotes the tangential component of the vector field AN in Qm. From these two Eq. (4.5) and we know that the
shape operator S commutes with the structure tensor φ on the distribution Q⊥

= Span[Aξ, (AN)T ].
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On the other hand, by taking the inner product of (4.5) with the tangent vector field Aξ we know that

SφAξ = φSAξ = 0. (4.7)

This gives that

SAξ = αη(Aξ )ξ . (4.8)

By virtue of the commuting Sφ = φS on the distribution Q⊥
= [Aξ, (AN)T ], we know that λ = 0 or λ = α if we put

SAN = λAN . Moreover, in a paper due to Suh [17] we have mentioned that the distribution Q⊥ is invariant under the shape
operator S if and only if φS = Sφ on the distribution Q⊥. Then, together with the notion of Hopf, without loss of generality
we may put

Sξ = αξ, SAξ = αAξ, SAN = αAN.

From this, together with (4.8), we have for a non-vanishing Reeb function α ̸= 0

Aξ = η(Aξ )ξ = ±ξ .

When the Reeb function α is vanishing, by the formula in Section 3, that is,

Yα = (ξα)η(Y ) − 2g(ξ, AN)g(Y , Aξ ) + 2g(Y , AN)g(ξ, Aξ ),

it follows that

g(Y , (AN)T )g(ξ, Aξ ) = 0.

Since in the second case we have assumed that N is not A-isotropic, we know g(ξ, Aξ ) ̸= 0. So it follows that (AN)T = 0.
This means that

AN = (AN)T + g(AN,N)N = g(AN,N)N.

Then it implies that

N = A2N = g(AN,N)AN = g2(AN,N)N.

This gives that g(AN,N) = ±1, that is, we can take the unit normal N such that AN = N . So the unit normal N isA-principal,
that is, AN = N . □

In order to prove our main theorem in the introduction, by virtue of Lemma 4.2, we can divide into two classes of
hypersurfaces in Qm with the unit normal N is A-principal or A-isotropic. When M is with A-isotropic, in Section 5 we
will give its proof in detail and in Section 6 we will give the remainder proof for the case that M has a A-principal normal
vector field.

5. Proof of main theorem withA-isotropic

In this section we want to prove our Main Theorem for real hypersurfaces M in Qm with commuting Ricci tensor when
the unit normal vector field becomes A-isotropic.

Since we assumed that the unit normal N is A-isotropic, by the definition in Section 3 we know that t =
π
4 . Then by the

expression of the A-isotropic unit normal vector field, (3.3) gives N =
1

√
2
Z1 +

1
√
2
JZ2. This implies that g(Aξ, ξ ) = 0. Since

the unit normal N is A-isotropic, we know that g(ξ, Aξ ) = 0. Moreover, by (3.4) and using an anti-commuting property
AJ = −JA between the complex conjugation A and the Kähler structure J , we proved the following (see also Lemma 4.2
in [19]).

Lemma 5.1. Let M be a Hopf hypersurface in Qm with (local) unit normal vector field N. For each point z ∈ M we choose A ∈ Az
such that Nz = cos(t)Z1 + sin(t)JZ2 holds for some orthonormal vectors Z1, Z2 ∈ V (A) and 0 ≤ t ≤

π
4 . Then

0 = 2g(SφSX, Y ) − αg((φS + Sφ)X, Y ) − 2g(φX, Y ) + 2g(X, AN)g(Y , Aξ ) − 2g(Y , AN)g(X, Aξ )
+ 2g(ξ, Aξ ){g(Y , AN)η(X) − g(X, AN)η(Y )}

holds for all vector fields X, Y on M.

Then for A-isotropic unit normal the Ricci tensor S of a real hypersurfaceM in the complex quadric Qm becomes

Ric(X) = (2m − 1)X − 3η(X)ξ + g(AX,N)AN + g(AX, ξ )Aξ + hSX − S2X .

From this, together with the fact that Aξ = φAN and φAξ = −AN , it follows that

φ · Ric(X) = (2m − 1)φX + g(AX,N)Aξ − g(AX, ξ )AN + hφSX − φS2X (5.1)
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and

Ric(φX) = (2m − 1)φX − g(X, Aξ )AN + g(X, AN)Aξ + hSφX − S2φX, (5.2)

where the function h denotes the trace of the shape operator S of M in Qm. Then subtracting (5.2) from (5.1) gives the
following

φ · Ric(X) − Ric(φX) = h(φS − Sφ)X − (φS2 − S2φ)X . (5.3)

On the other hand, we know that the Reeb invariant Ricci tensor LξRic = 0 is equivalent to the following

(φS − Sφ) · Ric = Ric · (φS − Sφ). (5.4)

By using the formula (5.4) and taking the trace to (5.3), we have

Tr(φ · Ric − Ric · φ)2 =

∑
i,j

g(φ · Ric(ei) − Ric · φ(ei), φ · Ric(ei) − Ric · φ(ei))

= hTr(φS − Sφ)(φ · Ric − Ric · φ) + Tr(φS2 − S2φ)(φ · Ric − Ric · φ)
= −Tr(φS2 − S2φ)(φRic − Ricφ),

(5.5)

where in the second equality we have used (5.4) and

Tr(φS − Sφ)(φ · Ric − Ric · φ) = Trφ · Ric(φS − Sφ) − Tr(φS − Sφ)Ric · φ

= Trφ(φS − Sφ) · Ric − Tr(φS − Sφ)Ric · φ

= Tr(φS − Sφ)Ric · φ − Tr(φS − Sφ)Ric · φ

= 0.

On the other hand, the final term in (5.5) becomes the following

Tr(φS2 − S2φ)(φ · Ric − Ric · φ) = TrφS2φ · Ric − TrS2φ2
· Ric − TrφS2Ric · φ + TrS2φ · Ric · φ

= 2TrφS2φ · Ric − TrS2φ2
· Ric − TrφS2Ric · φ.

(5.6)

By the property (5.4) due to the Reeb invariant Ricci tensor LξRic = 0, we have

φS(φS · Ric − Ric · φS + Ric · Sφ − SφRic) = 0.

From this, by taking the trace, the first two terms become

Tr(φS)2 · Ric − TrφS · Ric · φS = Tr(φS)2Ric − Tr(φS)2Ric = 0.

Then taking the trace of the other two terms becomes

TrφS · Ric · Sφ = TrφS2φ · Ric.

By virtue of this equation and using the notion of Hopf, the formula (5.5) can be changed as follows:

Tr(φ · Ric − Ric · φ)2 = −Tr(φS2 − S2φ)(φ · Ric − Ric · φ)
= Trφ2

· Ric · S2 + Trφ2S2 · Ric − 2Trφ2S · Ric · S
= 0,

(5.7)

where we have used the following equations

Trφ2
· Ric · S2 = Tr(−Ric · S2 + η(Ric · S2)ξ )

= −TrRic · S2 + η(Ric(S2ξ )),
(5.8)

Trφ2
· S2 · Ric = Tr(−S2 · Ric + η(S2 · Ric)ξ )

= −TrRic · S2 + η(S2 · Ricξ ),
(5.9)

and

−2Trφ2S · Ric · S = −2Tr(−S · Ric · S + η(S2 · Ric)ξ )
= 2TrS · Ric · S − 2η(S · Ric(Sξ )). (5.10)

From this we conclude that the Ricci tensor Ric commutes with the structure tensor φ for a case where the unit normal N
is A-isotropic. Then by a theorem due to Suh and Hwang [18], we give a complete classification in our main Theorem in the
introduction.
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6. Proof of main theorem withA-principal

In this section we want to prove our Main Theorem for real hypersurfaces in the complex quadric Qm with commuting
Ricci tensor andA-principal unit normal vector field. By the Ricci tensor given in the formula (4.1) forA-principal unit normal,
we give the following

Ric(φX) = (2m − 1)φX − g(AN,N)AφX + g(AφX,N)AN + hSφX − S2φX, (6.1)

and

φRic(X) = (2m − 1)φX − g(AN,N)φAX + g(AX,N)φAN + hφSX − φS2X, (6.2)

where the function h denotes the trace of the shape operator S ofM in Qm.
When we consider the unit normal N is A-principal, the unit normal N is invariant under the complex conjugation A in

A, that is, AN = N and Aξ = −ξ . By using such properties into (6.1) and (6.2), we have

φ · Ric(X) − Ric · φ(X) = −φAX + AφX + h(φS − Sφ)X − (φS2 − S2φ)X .

From this, together with LξRic = 0, which is equivalent to (φS − Sφ) · Ric = Ric · (φS − Sφ), we have

Tr(φ · Ric − Ric · φ)2 = hTr(φS − Sφ)(φ · Ric − Ric · φ)
− Tr(φS2 − S2φ)(φ · Ric − Ric · φ) − Tr(φA − Aφ)(φ · Ric − Ric · φ).

On the other hand, the complex conjugation is involutive and anti-commuting such that AJ = −JA, and the unit normal
N is A-invariant, it follows that

φA = −Aφ.

From this, together with Aξ = −ξ , we have

TrφA(φ · Ric − Ric · φ) = −TrAφ2
· Ric − TrRic · φ2A

= 2TrRic · A − η(Ric(Aξ )) − η(A · Ric(ξ ))
= 2{TrRic · A + η(Ric(ξ ))}.

Then it follows that

Tr(φ · Ric − Ric · φ)2 = −Tr(φS2 − S2φ)(φ · Ric − Ric · φ) − Tr(φA − Aφ)(φ · Ric − Ric · φ)
= 2η(Ric · S2(ξ )) − 2η(S · Ric · S(ξ )) − 4Tr(Ric · A) − 4η(Ric(ξ )).

(6.3)

The Ricci tensor given in the formula (4.1) for A-principal unit normal, that is, Aξ = −ξ gives the following

Ric(X) = (2m − 1)X − 2η(X)ξ − AX + hSX − S2X,

and

Ric(ξ ) = {2(m − 1) + hα − α2
}ξ .

Then it follows that

Ric(ei) = (2m − 1)ei − 2η(ei)ξ − Aei + hSei − S2ei,

and

Ric(Aei) = (2m − 1)ei + 2η(ei)ξ − ei + hSAei − S2Aei,

where we have taken an orthonormal basis {ξ, e1, · · · , em−1, φe1, · · · , φem−1} of TzM , z ∈ M , in Qm such that Aei = ei,
Aφei = −φei, Aξ = −ξ and AN = N . So it follows that

Tr(Ric · A) = g(Aξ, Ric(ξ )) +

2m−2∑
i=1

g(Aei, Ric(ei))

= −g(ξ, Ric(ξ )) +

m−1∑
i=1

g(Aei, Ric(ei)) +

m−1∑
i=1

g(Aφei, Ric(φei)).

Substituting these ones into (6.3) and using the orthonormal basis, we have

Tr(φ · Ric − Ric · φ)2 = −4
∑m−1

i=1 {g(Ric(ei), ei) − g(φei, Ric(φei))}
= −4{Tr∗Ric + Tr∗φ · Ric · φ}

= −4{Tr∗Ric + Tr∗φ2
· Ric}

= −4{Tr∗Ric − Tr∗Ric}
= 0,

(6.4)
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where Tr∗Ric denotes Tr∗Ric =
∑m−1

i=1 g(Ric(ei), ei) for the orthonormal basis {ξ, e1, · · · , em−1, φe1, · · · , φem−1} of TzM ,
z ∈ M , in Qm. This concludes that even for the A-principal normal the Ricci tensor Ric commutes with the structure tensor
φ, that is, Ric · φ = φ · Ric. Then by Theorem C due to Suh and Hwang [18], we give a complete classification of our main
result.
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