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1. Introduction

When we consider some Hermitian symmetric spaces of rank 2, we can usually give examples of Riemannian symmetric
spaces SUy12/S(U,Uy,) and SU; 1, /S(U,Upy ), which are said to be complex two-plane Grassmannians and complex hyperbolic
two-plane Grassmannians respectively (see [1-4] and [5]). These are viewed as Hermitian symmetric spaces and quater-
nionic Kdhler symmetric spaces equipped with the Kahler structure J and the quaternionic Kdhler structure J and they have
rank 2.

As another kind of Hermitian symmetric space with rank 2 of compact type different from the above ones, we can give an
example of complex quadric Q™ = S04 /50,,5S0,, which is a complex hypersurface in complex projective space CP™*! (see
Klein [6], and Smyth [7]). The complex quadric can also be regarded as a kind of real Grassmann manifolds of compact type
with rank 2 (see Kobayashi and Nomizu [8]). Accordingly, the complex quadric admits two important geometric structures,
a complex conjugation structure A and a Kdhler structure J, which anti-commute with each other, that is, A] = —JA. Then for
m > 2 the triple (Q™, J, g) is a Hermitian symmetric space of compact type with rank 2 and its maximal sectional curvature
is equal to 4 (see Klein [6] and Reckziegel [9]).

In the complex projective space CP™*! and the quaternionic projective space QP™! some classifications related
to commuting Ricci tensor were investigated by Kimura [10,11], Pérez [12] and Pérez and Suh [13,14] respectively.
The classification problems of the complex 2-plane Grassmannian G,(C™*?) = SU;,.»/S(U,Uy,) with certain geometric
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conditions were mainly discussed in Suh [3,15] and [4], where the classification of contact hypersurfaces, parallel Ricci tensor
and harmonic curvature of a real hypersurface in G,(C™2) were extensively studied. Moreover, in [4] we have asserted
that the Reeb flow on a real hypersurface in SU; ,,/S(U,Uy,) is isometric if and only if M is an open part of a tube around a
totally geodesic SUy jn—1/S(UzUp—1) C SUz.;m/S(U>Up,) . Suh [5] strengthened this result to hypersurfaces in Go(C™*2) with
commuting Ricci tensor and gave a characterization of real hypersurfaces in Gy(C™*?) = SU42/S(UnU,) as follows:

Theorem A. Let M be a Hopf real hypersurface in G,(C™+2) with commuting Ricci tensor, m > 3. Then M is locally congruent to
a tube of radius r over a totally geodesic Go(C™ 1) in Gy(C™2).

On the other hand, Suh and Woo [ 16] have investigated a classification problem of real hypersurfaces in SU; , /S(U; - Up,)
with parallel Ricci tensor. Moreover, Suh [5] studied another classification for Hopf hypersurfaces in complex hyperbolic
two-plane Grassmannians SU, ,, /S(U,Up,) with commuting Ricci tensor as follows:

Theorem B. Let M be a Hopf hypersurface in SU 1, /S(Uz - Uy, ) with commuting Ricci tensor, m > 3. Then M is locally congruent
to an open part of a tube around some totally geodesic SUy m—1/S(Uy - Up—1) in SUy 1 /S(U; - Up) or a horosphere whose center
at infinity with JX € JX is singular.

It is known that the Reeb flow on a real hypersurface in G,(C™?) is isometric if and only if M is an open part of a
tube around a totally geodesic G,(C™!) C G,(C™*2) in [5] and [17]. Moreover, in [4] we asserted that the Reeb flow
on a real hypersurface in SU; ,/S(U,Up,) is isometric if and only if M is an open part of a tube around a totally geodesic
SUz m—1/S(UUmm—1) C SU.1m/S(U, U ). Here, the Reeb flow on real hypersurfaces in SUy12/S(Up Uy ) or SU; n /S(Ua Uy ) is said
to be isometric if the shape operator commutes with the structure tensor. Then naturally it can be easily checked that the
Ricci tensor commutes with the structure tensor. In the paper [ 18] due to Suh and Hwang, we investigated this problem for
real hypersurfaces in the complex quadric Q™ = SOp,42/50,5S0, and obtained the following result:

Theorem C. Let M be a Hopf real hypersurface in the complex quadric Q™, m > 4, with commuting Ricci tensor. If the shape
operator commutes with the structure tensor on the distribution O, then M is locally congruent to an open part of a tube around
totally geodesic CP* in Q%, m = 2k or M has 3 distinct constant principal curvatures given by

2
a=+2m—-3),y=0,A=0, and p = ——————o0r

2(m — 3)
2 6
a=,/-(m=3),y=0,1=0, and p = — V6
3 m—3

with corresponding principal curvature spaces respectively
T, = [£],T, = [A§,AN], ¢(T,.) =T,, and dim T, =dim T, =m — 2.
Now at each point z € M let us consider a maximal 2(-invariant subspace Q, of T,M, z € M, defined by
Q,={XeT,M|AX € ,M forall A € 2,}

of T,M, z € M. Thus for a case where the unit normal vector field N is 2-isotropic it can be easily checked that the orthogonal
complement 9} = C, © Q;,z € M, of the distribution Q in the complex subbundle ¢, becomes Q} = Span{A&, AN}.
Here it can be easily checked that the vector fields A and AN belong to the tangent space T,M, z € M if the unit normal
vector field N becomes 2-isotropic. Thus for a case where the unit normal vector field N is 2(-isotropic it can be easily
checked that the orthogonal complement QZL =C, © 9,z € M, of the distribution Q in the complex subbundle C, becomes
QZl = Span{A&, AN}. Moreover, the vector fields A and AN belong to the tangent space T,M, z € M if the unit normal vector
field N becomes 2l-isotropic. Then motivated by the above result, in [ 17] we gave another theorem for real hypersurfaces in
the complex quadric Q™ with parallel Ricci tensor and 2-isotropic unit normal.

Apart from the complex structure J there is another distinguished geometric structure on Q™, namely a parallel rank two
vector bundle 2 which contains an S'-bundle of real structures, that is, complex conjugations A on the tangent spaces of Q™.
This geometric structure determines a maximal 2(-invariant subbundle Q of the tangent bundle TM of a real hypersurface M
inQ™.

Recall that a nonzero tangent vector W € Tj;;Q™ is called singular if it is tangent to more than one maximal flat in Q™.
There are two types of singular tangent vectors for the complex quadric Q™:

1. If there exists a conjugation A € 2 such that W € V/(A), then W is singular. Such a singular tangent vector is called
2A-principal.

2. If there exist a conjugation A € 2( and orthonormal vectors X, Y € V(A) such that W/|W| = (X +]Y)/\/§, then W is
singular. Such a singular tangent vector is called 2(-isotropic.

When we consider a hypersurface M in the complex quadric Q™, under the assumption of some geometric properties
the unit normal vector field N of M in Q™ can be divided into two classes if either N is 2(-isotropic or 2-principal (see [19]
and [17]). In the first case where N is 2-isotropic, we have shown in [19] that M is locally congruent to a tube over a totally
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geodesic CP¥ in Q2. In the second case, when the unit normal N is 2-principal, we proved that a contact hypersurface M in
Q™ is locally congruent to a tube over a totally geodesic and totally real submanifold S™ in Q™ (see [17]).

In the study of complex two-plane Grassmannian G,(C™*2) or complex hyperbolic two-plane Grassmannian SUs ,, /S(U -
Un,) we studied hypersurfaces with parallel Ricci tensor and gave non-existence properties respectively (see [3] and [16]).
In [17] we also considered the notion of parallel Ricci tensor, that is, VRic = 0, for hypersurfaces M in Q™. But from the
assumption of Ricci parallel, it was impossible to derive the fact that either the unit normal N is 2-isotropic or 2(-principal.
So in [17] we gave a classification with the further assumption of 2(-isotropic.

But fortunately when we consider Ricci commuting, that is, Ric- ¢ = ¢ - Ric for hypersurfaces M in Q™, we can assert that
the unit normal vector field N becomes either 2(-isotropic or 2(-principal (see Suh and Hwang [ 18]). Then motivated by such
a result and using Theorem C, in this paper we give a complete classification for real hypersurfaces in the complex quadric
Q™ with Reeb invariant Ricci tensor, that is, £z Ric = 0 as follows:

Main Theorem. Let M be a Hopf real hypersurface in the complex quadric Q™, m > 4, with Reeb invariant Ricci tensor. If the
shape operator commutes with the structure tensor on the distribution Q*, then M is locally congruent to an open part of a tube
around totally geodesic CP* in Q*, m = 2k or M has 3 distinct constant principal curvatures given by

2
a=2m—-3),y=0,A=0, andy = —————=or

2(m — 3)

2 6

a=,/-(m-3),y =0,1=0, and,u:—L
3 m—3

with corresponding principal curvature spaces respectively

T, = [£],T, = [A£,AN], ¢(T;) = T,,, and dim T, = dim T, = m — 2.

Remark 1.1. In Main Theorem the second and third ones can be explained geometrically as follows: the real hypersurface M

islocally congruent to M x C, where M1 is a tube of radiusr = %tan‘1 +/m — 3orrespectively, of radiusr = izt.am‘1 mT—E»
over anm — 1-dimensional unit sphere ™! in Q™. Then, by the result due to Suh [17], M; becomes a contact hypersurface

defined by S¢ + ¢S = k¢, k = —ﬁ, and k = — \/% respectively. By using the Segre embedding, the embedding

M;xC C Q™ 'xC c Qmisdefined by (zg, z1, - - - , Zm, W) = (Zow, Z1W, - - -, Zmw, 0). Here (zow > +(z;w)* +- - -+ (znw)? =
(223 + -+ -+ 2z2)w? = 0, where {zo, - - - , z} denotes a coordinate system in Q™ satisfying z2 + - - - + z2 = 0.

2. The complex quadric

For more background to this section we refer to [6,8,9,17,19] and [20]. The complex quadric Q™ is the complex
hypersurface in CP™! which is defined by the equation 23 + -+ zﬁqﬂ = 0, where zy, ..., zyy+1 are homogeneous
coordinates on CP™!, We equip Q™ with the Riemannian metric g which is induced from the Fubini-Study metric g on
CP™! with constant holomorphic sectional curvature 4. The Fubini-Study metric g is defined by 2(X,Y) = @(X,Y)

for any vector fields X and Y on CP™! and a globally closed (1, 1)-form & given by & = —4iddlogf; on an open set
U ={[z° 2!, ---,z™"] € CP™'|Z # 0}, where the function f; denotes f; = ?;r()]t]!‘f]-", and tf = Zz—f forj, k=0, -, m+1.

Then naturally the Kahler structure on CP™*! induces canonically a Kihler structure (J, g) on the complex quadric Q™.

The complex projective space CP™*! is a Hermitian symmetric space of the special unitary group SUy,,», namely CP™! =
SUps2/S(Up41Uq). We denote by o = [0, ..., 0, 1] € CP™! the fixed point of the action of the stabilizer S(Uy,41U;). The
special orthogonal group SO,.4+» C SU,.» acts on CP™ ! with cohomogeneity one. The orbit containing o is a totally geodesic
real projective space RP™!  CP™+!, The second singular orbit of this action is the complex quadric Q™ = SO,42/S0,S0,.
This homogeneous space model leads to the geometric interpretation of the complex quadric Q™ as the Grassmann manifold
Gj(Rm”) of oriented 2-planes in R™*2, It also gives a model of Q™ as a Hermitian symmetric space of rank 2. The complex
quadric Q' is isometric to a sphere S with constant curvature, and Q? is isometric to the Riemannian product of two 2-
spheres with constant curvature. For this reason we will assume m > 3 from now on.

In another way, the complex projective space CP™*! is defined by using the Hopf fibration

w82 cp™ 2 2],

which is said to be a Riemannian submersion. Then naturally we can consider the following diagram for the complex quadric
Q™ as follows:

0=n7Y%Q) i §2m+3 —om+2
Q= Qm i (Cpm+1
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The submanifold Q of codimension 2 in $2™*3 s called the Stiefel manifold of orthonormal 2-frames in R™2, which is
given by

. 1
Q= {x +iy € C™|g(x, x) = g(y,y) = 5 andg(x y) = 0} ,

where g(x,y) = Z::;zxiy,» foranyx = (x1, ..., Xpy2)andy = (y1, ..., Yme2) € R™ 2 Then the tangent space is decomposed
as T,52™3 = H, @ F, and T,Q = H,(Q) ® F,(Q) atz = x + iy € Q respectively, where the horizontal subspaces H, and
H,(Q) are given by H, = (Cz)* and H,(Q) = (Cz & Cz)*, and F, and F,(Q) are fibers which are isomorphic to each other.
Here H,(Q ) becomes a subspace of H, of real codimension 2 and orthogonal to the two unit normals —Z and —JZ. Explicitly,

at the point z = x + iy € Q it can be described as

H, ={u+iveC™? gxu)+gy,v)=0 gk v)=gly, u)}

and
H,(Q)={u+iv e H| g(u x)=g(uy) =g, x)=gl,y)=0}
where C™? = R™? @ iR™2, and g(u, x) = Z,leuixi forany u = (uy, ..., Un2), X = (X1, ..., Xmp2) € R™2,
These spaces can be naturally projected by the differential map =, as =.H, = T,,(Z)(CP'"Jrl and m.H,(Q) = T;»)Q

respectively. This gives that at the point 77(z) = [z] the tangent subspace Tj,;;Q™ becomes a complex subspace of Tj;CP™*!
with complex codimension 1 and has two unit normal vector fields —z and —Jz (see Reckziegel [9]).

Then let us denote by A; the shape operator of Q™ in CP™*! with respect to the unit normal Z. It is defined by A;w =
VwZ = w for a complex Euclidean connection V induced from C™*2 and all w € Ti;;Q™. That is, the shape operator A; is just
a complex conjugation restricted to T;;Q™. Moreover, it satisfies the following for any w € T;;Q™ and any A € S' C C

Aw = AzAzw = Ak
= M = AV;pZ = AW
= [APw = w.

Accordingly, Aii = I for any A € S'. So the shape operator A; becomes an anti-commuting involution such that A% =l and
AJ] = —JA on the complex vector space Tj;;Q™ and

T1Q™ = V(Az) @ JV(Az),

where V(A;) = R™2 N T;7Q™ is the (+1)-eigenspace and JV(A;) = iR™?2 N T,;Q™ is the (—1)-eigenspace of A;. That is,
A;X = X and A;JX = —JX, respectively, for any X € V(A;).

Geometrically this means that the shape operator A; defines a real structure on the complex vector space Tj;;Q™,
or equivalently, is a complex conjugation on Tj;;Q™. Since the real codimension of Q™ in CP™*! is 2, this induces an
S'-subbundle 2 of the endomorphism bundle End(TQ™) consisting of complex conjugations.

There is a geometric interpretation of these conjugations. The complex quadric Q™ can be viewed as the complexification
of the m-dimensional sphere S™. Through each point [z] € Q™ there exists a one-parameter family of real forms of Q™ which
are isometric to the sphere S™. These real forms are congruent to each other under action of the center SO, of the isotropy
subgroup of SO,;1 5 at [z]. The isometric reflection of Q™ in such a real form S™ is an isometry, and the differential at [z] of
such a reflection is a conjugation on Tj;;Q™. In this way the family 2 of conjugations on Tj;;Q™ corresponds to the family
of real forms S™ of Q™ containing [z], and the subspaces V(A) C Tj;;Q™ correspond to the tangent spaces Tj;;S™ of the real
forms S™ of Q™.

The Gauss equation for Q™ C CP™! implies that the Riemannian curvature tensor R of Q™ can be described in terms of
the complex structure J and the complex conjugations A € :

RX,Y)Z = g(Y,2)X — g(X, 2)Y + (Y, Z)X — g(UX, Z)Y — 280X, Y)jZ
+2(AY, Z)AX — g(AX, Z)AY + g(JAY, Z)JAX — g(JAX, Z)JAY.

Note that J and each complex conjugation A anti-commute, that is, A] = —JA for each A € 2.
For every unit tangent vector W € Tj;;Q™ there exist a conjugation A € 2l and orthonormal vectors X, Y € V(A) such that

W = cos(t)X + sin(t)JY

for some t € [0, 7 /4]. The singular tangent vectors correspond to the valuest = 0and t = 7w /4. When W = X for X € V(A),
t = 0, there exist many kinds of maximal 2-flats RX + RZ for Z € V(A) orthogonal to X € V(A). So the tangent vector X is
said to be singular. When W = (X +]Y)/ﬁ for t = 7, it becomes also a singular tangent vector, which belongs to many
kinds of maximal 2-flats given by R(X + JY) + RZ for any Z € V(A) orthogonal to X € V(A) or R(X + JY) + RJZ for any
JZ € JV(A).If0 < t < 7 /4 then the unique maximal flat containing W is RX & RJY.
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3. Some general equations

Let M be a real hypersurface in Q™ and denote by (¢, &, 1, g) the induced almost contact metric structure. Note that
& = —JN, where N is a (local) unit normal vector field of M and » the corresponding 1-form defined by n(X) = g(&, X) for
any tangent vector field X on M. The tangent bundle TM of M splits orthogonally into TM = C & R&, where C = ker(n) is
the maximal complex subbundle of TM. The structure tensor field ¢ restricted to C coincides with the complex structure J
restricted to C, and ¢& = 0.

At each point z € M we define a maximal 2(-invariant subspace of T,M, z € M as follows:

Q,={XeT,M|AX € T,M forall A € 2,}.

Then we want to introduce an important lemma which will be used in the proof of our main Theorem in the introduction.

Lemma 3.1 ([19]). Foreachz € M we have

(i) If N, is A-principal, then Q, = C,.
(ii) If N is not 2A-principal, there exist a conjugation A € 2l and orthonormal vectors X,Y € V(A) such that N, =
cos(t)X + sin(t)JY for somet € (0, 7 /4). Then we have Q, = C, © C(JX + Y).

We now assume that M is a Hopf hypersurface. Then the Reeb vector field £ = —]N satisfies the following
S& = wé,

where S denotes the shape operator of the real hypersurfaces M with the smooth function « = g(S&, €) on M. When we
consider the transform JX by the Kahler structure J on Q™ for any vector field X on M in Q™, we may put

JX = ¢X + n(X)N
for a unit normal N to M. Then we now consider the equation of Codazzi

8((VXSIY = (VySX, Z) = n(X)g(¢Y, Z) — n(Y)g(¢X, Z) — 20(Z)g(¢X, Y) 3.1)
Putting Z = £ in (3.1) we get

g(VxS)Y — (VyS)X, §) = —28(¢X, Y) + g(X, AN)g(Y, AE) — g(Y, AN)g(X, A¢)
On the other hand, we have

g((VxS)Y — (WyS)X, §) = g((VxS), Y) — g((VyS)§, X)

= Xe)n(Y) — (Yan(X) + ag((S¢ + ¢S)X, Y) — 2g(S¢SX, Y).

Comparing the previous two equations and putting X = & yields

Ya = (§a)n(Y) — 2g(5, AN)g(Y, Ag) + 2g(Y, AN)g(§, AS).

Reinserting this into the previous equation yields

g((VxS)Y — (WS)X, §) = —2g(§, AN)g(X, A )n(Y) + 28(X, AN)g(&, AS)n(Y)
+2g(§, AN)g(Y, A§)n(X) — 2g(Y, AN)g(§, A& )n(X)
+ag((pS +So)X,Y) — 2g(SpSX, Y).
Altogether this implies
0 =2g(S¢SX, Y) — ag((#S + SP)X, Y) — 28(¢X, Y)
+g(X,AN)g(Y, A§) — g(Y, AN)g(X, A§)
—g(X, A8)g(Y, A§) + g(Y, A& )gUX, AE) (3.2)
+2g(§, AN)g(X, A§)n(Y) — 2g(X, AN)g(§, A& n(Y)
—2g(&§,AN)g(Y, A& )n(X) + 2g(Y, AN)g(§, A§ )n(X).

At each point z € M we can choose A € 2, such that

N = cos(t)Zy + sin(t)JZ,
for some orthonormal vectors Z;,Z, € V(A)and 0 < t < % (see Proposition 3 in [9]). Note that t is a function on M. First of
all, since £ = —JN, we have

AN = cos(t)Z, — sin(t)|Z,,
& = sin(t)Z; — cos(t)JZy, (3.3)
A& = sin(t)Z; + cos(t)JZ;.
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This implies g(&, AN) = 0 and hence

0 =2g(SpSX,Y) —ag((¢S + Se)X,Y) — 2g(¢X, Y)
—2g(X, AN)g(&, As)n(Y) + 2g(Y, AN)g(&, A§)n(X).

(34)

4. Reeb invariance and a key lemma

_ By theequation of Gauss, the curvature tensor R(X, Y)Z for areal hypersurface M in Q™ induced from the curvature tensor
R of Q™ can be described in terms of the complex structure J and the complex conjugation A € 2 as follows:

RX,Y)Z = g(Y,Z2)X —g(X, Z)Y + g(oY. 2)pX — g(¢X, Z)pY — 28(¢X, Y)pZ
+g(AY, Z)AX — g(AX, Z)AY + g(JAY, Z)JAX — g(JAX, Z)JAY + g(SY, Z)SX — g(SX, Z)SY

foranyX,Y,Z e T,M,z € M.
Now let us put

AX = BX + p(X)N,

for any vector field X € T,Q™, z € M, p(X) = g(AX, N), where BX and p(X)N respectively denote the tangential and the
normal component of the vector field AX. Then A& = B¢ + p(§)N and p(&) = g(A&, N) = 0. Then it follows that

AN = AJ& = JAE = —](BE + p(€)N)
= —(¢B& + n(BE)N).

The equation gives g(AN, N) = —n(B&) and g(AN, &) = 0. From this, together with the definition of the Ricci tensor, we have
Ric(X) = (2m — 1)X — 3n(X)& — g(AN, N)AX + g(AX, N)AN + g(AX, &)A€ + (TrS)SX — S*X. (4.1)
On the other hand, it is known that the Ricci tensor is Reeb invariant, that is, £;S = 0 if and only if
(¢S — S¢) - Ric = Ric - (¢S — S¢). (4.2)

Here we want to give a remark as follows:

Remark 4.1. Let M be a real hypersurface over a totally geodesic CP* ¢ Q%, m = 2k. Then by a theorem due to Suh [17]
the structure tensor commutes with the shape operator, that is, S¢ = ¢S. Moreover, the unit normal vector field N becomes
2A-isotropic. This gives n(BE) = g(A&, &) = 0. So it naturally satisfies the formula (4.2), that is, Ricci commuting.

On the other hand, from (4.3) we assert an important lemma as follows:

Lemma 4.2. Let M be a Hopf real hypersurface in Q™, m > 3, with Reeb invariant Ricci tensor. Then the unit normal vector field
N becomes singular, that is, N is 2d-isotropic or 2l-principal.

Proof. By putting X = £ in (4.2) we get

(¢S — S¢)Ric(E) = 0. (4.3)
Here from (4.1) the Ricci curvature is given by

Ric(§) = (2m — 4)€ — g(AN, N)AE + g(AE, £)AE + (t1S)aé — o’E,
where g(A&, &) = g(AJN,JN) = —g(JAN, JN) = —g(AN, N). Substituting this one into (4.3) gives

g(AN, N)(¢S — S¢)AE = 0. (4.4)

The first case gives that g(AN, N) = g(A§, &) = cos2t = 0, thatis, t = %. This implies that the unit normal N becomes
N = % which means that N is 2-isotropic.
The second case gives that

@SAE = SPAS. (4.5)
Similarly, we also know that
@S(AN)" = SP(AN)', (4.6)

where (AN)" denotes the tangential component of the vector field AN in Q™. From these two Eq. (4.5) and we know that the
shape operator S commutes with the structure tensor ¢ on the distribution Q- = Span[Ag, (AN)"].
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On the other hand, by taking the inner product of (4.5) with the tangent vector field A& we know that

SPAE = pSAE = 0. (4.7)
This gives that

SAE = an(A5)E. (4.8)

By virtue of the commuting S¢ = ¢S on the distribution Q+ = [A£, (AN)"], we know that . = O or A = o if we put
SAN = )AN. Moreover, in a paper due to Suh [17] we have mentioned that the distribution Q * is invariant under the shape
operator S if and only if S = S¢ on the distribution Q. Then, together with the notion of Hopf, without loss of generality
we may put

S& = wk&, SA: =aA&, SAN = wAN.
From this, together with (4.8), we have for a non-vanishing Reeb function o # 0
A§ = n(A§)E = £§.
When the Reeb function « is vanishing, by the formula in Section 3, that is,
Yo = (§a)n(Y) — 2g(§, AN)g(Y, A§) + 2g(Y, AN)g(§, AS),
it follows that
(Y, (AN)")g(§,A8) = 0.

Since in the second case we have assumed that N is not 2-isotropic, we know g(&, A¢) # 0. So it follows that (AN)T = 0.
This means that

AN = (AN)T + g(AN, N)N = g(AN, N)N.
Then it implies that
N = A’N = g(AN, N)AN = g%(AN, N)N.

This gives that g(AN, N) = +1, that is, we can take the unit normal N such that AN = N. So the unit normal N is 2-principal,
that is, AN = N. O

In order to prove our main theorem in the introduction, by virtue of Lemma 4.2, we can divide into two classes of
hypersurfaces in Q™ with the unit normal N is 2-principal or 2A-isotropic. When M is with 2-isotropic, in Section 5 we
will give its proof in detail and in Section 6 we will give the remainder proof for the case that M has a 2(-principal normal
vector field.

5. Proof of main theorem with 2(-isotropic

In this section we want to prove our Main Theorem for real hypersurfaces M in Q™ with commuting Ricci tensor when
the unit normal vector field becomes 2(-isotropic.

Since we assumed that the unit normal N is 2-isotropic, by the definition in Section 3 we know that t = 7. Then by the
expression of the -isotropic unit normal vector field, (3.3) gives N = %21 + % JZ,. This implies that g(A&, &) = 0. Since
the unit normal N is 2A-isotropic, we know that g(&, A8) = 0. Moreover, by (3.4) and using an anti-commuting property
A] = —JA between the complex conjugation A and the Kdhler structure J, we proved the following (see also Lemma 4.2
in [19]).

Lemma 5.1. Let M be a Hopf hypersurface in Q™ with (local) unit normal vector field N. For each point z € M we choose A € 2,
such that N, = cos(t)Z; + sin(t)JZ, holds for some orthonormal vectors Z,,Z, € V(A)and0 < t < %. Then

0 = 2g(S¢SX, Y) — ag((¢pS + SP)X, Y) — 28(¢X, Y) + 2g(X, AN)g(Y, A§) — 2g(Y, AN)g(X, A§)

+2g(§, A){g(Y, AN)n(X) — g(X, AN)n(Y)}
holds for all vector fields X, Y on M.
Then for 2(-isotropic unit normal the Ricci tensor S of a real hypersurface M in the complex quadric Q™ becomes

Ric(X) = (2m — 1)X — 3n(X)& + g(AX, N)AN + g(AX, £)AE 4 hSX — S?X.

From this, together with the fact that A4 = ¢AN and A& = —AN, it follows that

¢ - Ric(X) = (2m — 1)¢X + g(AX, N)AE — g(AX, £)AN + h¢SX — $S2X (5.1)
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and
Ric(¢X) = (2m — 1)pX — g(X, A£)AN + g(X, AN)AE + hS¢X — S%¢X, (5.2)

where the function h denotes the trace of the shape operator S of M in Q™. Then subtracting (5.2) from (5.1) gives the
following

¢ - Ric(X) — Ric(¢pX) = h(¢S — Sp)X — (¢S* — S2p)X. (5.3)
On the other hand, we know that the Reeb invariant Ricci tensor £¢Ric = 0 is equivalent to the following
(¢S — S¢p) - Ric = Ric - (¢S — S¢). (5.4)
By using the formula (5.4) and taking the trace to (5.3), we have

Tr(¢ - Ric — Ric - ¢)* = Zg(d) - Ric(e;) — Ric - ¢(e;), ¢ - Ric(e;) — Ric - ¢(e;))
ij

5.5
= hTr(¢S — S¢)(¢ - Ric — Ric - ¢) + Tr(¢S? — S%¢)(¢ - Ric — Ric - ¢) (5:5)
= —Tr(¢S* — S?¢)(¢Ric — Rice),
where in the second equality we have used (5.4) and
Tr(¢pS — S¢)(¢ - Ric — Ric - ¢) = Tr¢ - Ric(¢pS — S¢p) — Tr(¢pS — S¢)Ric - ¢
= Tr¢(¢pS — S¢) - Ric — Tr(¢pS — S¢)Ric - ¢
= Tr(¢S — S¢)Ric - ¢ — Tr(¢S — S¢)Ric - ¢
= 0.
On the other hand, the final term in (5.5) becomes the following
Tr(¢S? — S?¢)(¢ - Ric — Ric - ¢) = Tr¢pS?¢ - Ric — TrS2¢? - Ric — Tr¢pS>Ric - ¢ + TrS*¢ - Ric - ¢ (56)
= 2Tr¢S?¢ - Ric — TrS%¢? - Ric — Tr¢S*Ric - ¢. :
By the property (5.4) due to the Reeb invariant Ricci tensor L£¢Ric = 0, we have
¢S(4S - Ric — Ric - ¢S + Ric - S¢p — S¢Ric) = 0.
From this, by taking the trace, the first two terms become
Tr(¢S)? - Ric — Tr¢S - Ric - ¢S = Tr(¢S)*Ric — Tr(¢S)*Ric = 0.
Then taking the trace of the other two terms becomes
Tr¢S - Ric - S¢ = Tr¢pS¢ - Ric.
By virtue of this equation and using the notion of Hopf, the formula (5.5) can be changed as follows:
Tr(¢ - Ric — Ric - $)* = —Tr(¢S? — S?¢)(¢ - Ric — Ric - §)
= Tr¢? - Ric - S + Tr¢p?S? - Ric — 2Tr¢S - Ric - S (5.7)
=0,
where we have used the following equations
Tr¢p? - Ric - S?> = Tr(—Ric - S + n(Ric - §?)§) (58)
= —TrRic - $% + n(Ric(52¢)), :
Tr¢p? - S2 . Ric = Tr(—S? - Ric + n(S% - Ric)§) (59)
= —TrRic - S + 5(S? - Ric&), :
and
—2Tr¢%S - Ric - S = —2Tr(=S - Ric - S + n(S? - Ric)¢) (5.10)

= 2TrS - Ric - S — 21(S - Ric(S&)).

From this we conclude that the Ricci tensor Ric commutes with the structure tensor ¢ for a case where the unit normal N
is 2-isotropic. Then by a theorem due to Suh and Hwang [ 18], we give a complete classification in our main Theorem in the
introduction.
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6. Proof of main theorem with 2(-principal

In this section we want to prove our Main Theorem for real hypersurfaces in the complex quadric Q™ with commuting
Ricci tensor and 2(-principal unit normal vector field. By the Ricci tensor given in the formula (4.1) for 2(-principal unit normal,
we give the following

Ric(¢pX) = (2m — 1)pX — g(AN, N)ApX + g(ApX, N)AN + hS¢pX — S?¢X, (6.1)
and
@Ric(X) = (2m — 1)pX — g(AN, N)PAX + g(AX, N)PAN + h¢SX — ¢S>X, (6.2)

where the function h denotes the trace of the shape operator S of M in Q™.
When we consider the unit normal N is 2-principal, the unit normal N is invariant under the complex conjugation A in
2, that is, AN = N and A = —&. By using such properties into (6.1) and (6.2), we have

¢ - Ric(X) — Ric - p(X) = —pAX + ApX + h(¢pS — SPp)X — (¢S? — S2p)X.
From this, together with £¢Ric = 0, which is equivalent to (¢S — S¢) - Ric = Ric - (¢S — S¢), we have
Tr(¢ - Ric — Ric - ¢)* = hTr(¢S — S¢)(¢ - Ric — Ric - ¢)
— Tr(¢S* — S2¢)(¢ - Ric — Ric - ¢) — Tr(¢A — Ap)(¢ - Ric — Ric - ¢).

On the other hand, the complex conjugation is involutive and anti-commuting such that A] = —JA, and the unit normal
N is 2-invariant, it follows that

DA = —Ad.
From this, together with A& = —&, we have

TrgA(¢ - Ric — Ric - ¢) = —TrA¢? - Ric — TrRic - ¢*A
2TrRic - A — n(Ric(A&)) — n(A - Ric(§))
2{TrRic - A + n(Ric(&))}.

Then it follows that
Tr(¢ - Ric — Ric - ¢> = —Tr(¢pS*> — S2¢)(¢ - Ric — Ric - ¢) — Tr(pA — Ap)(¢ - Ric — Ric - ¢)

= 2n(Ric - S*(£)) — 2n(S - Ric - S(£)) — 4Tr(Ric - A) — 4n(Ric()). (6.3)
The Ricci tensor given in the formula (4.1) for 2-principal unit normal, that is, A& = —£& gives the following
Ric(X) = 2m — 1)X — 2n(X)E — AX + hSX — S2X,
and
Ric(£) = {2(m — 1) + ha — o?}&.
Then it follows that
Ric(e;) = (2m — 1)e; — 2n(e;)& — Ae; + hSe; — S2e;,
and
Ric(Ae;) = (2m — 1)e; + 2n(e;)é — e; + hSAe; — S%Ae;,
where we have taken an orthonormal basis {£, e, -+, en_1, ¢eq, - -, pem_1} of T,M, z € M, in Q™ such that Ae; = e;,
Ape; = —¢pe;, AE = —& and AN = N. So it follows that
2m—2
Tr(Ric - A) = g(A&, Ric(€))+ ) _ g(Ae, Ric(e:))
rin:—ll m—1

—g(&, Ric(§)) + ) _ g(Aei, Ric(e;) + ) _ g(Aei, Ric(ge)).

i=1 i=1
Substituting these ones into (6.3) and using the orthonormal basis, we have

Tr(¢ - Ric — Ric - ¢ = —4 Y [", {g(Ric(e;), ;) — g(¢be;, Ric(ger))}

—4{Tr*Ric + Tr*¢ - Ric - ¢}

—4{Tr*Ric + Tr*¢? - Ric) (6.4)
—4{Tr*Ric — Tr*Ric}

0,
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where Tr*Ric denotes Tr*Ric = Z?:]]g(Ric(ei), e;) for the orthonormal basis {£,eq, - -, em_1, €1, - -, pem_1} of T,M,

z € M, in Q™. This concludes that even for the 2-principal normal the Ricci tensor Ric commutes with the structure tensor
¢, that is, Ric - ¢ = ¢ - Ric. Then by Theorem C due to Suh and Hwang [ 18], we give a complete classification of our main
result.

Acknowledgments

This work was supported by Grant Proj. No. NRF-2015-R1A2A1A-01002459 from National Research Foundation of Korea,
and the third author by NRF-2017-R1C1B-1010265.

References

[1] D.H. Hwang, H. Lee, C. Woo, Semi-parallel symmetric operators for Hopf hypersurfaces in complex two plane Grassmannians, Monatsh. Math. 177
(2015) 539-550.
[2] Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians with commuting Ricci tensor, J. Geom. Phys. 60 (2010) 1792-1805.
[3] Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians with parallel Ricci tensor, Proc. Roy. Soc. Edinburgh Sect. A 142 (2012) 1309-1324.
[4] YJ. Suh, Hypersurfaces with isometric Reeb flow in complex hyperbolic two-plane Grassmannians, Adv. Appl. Math. 50 (2013) 645-659.
[5] Y.J. Suh, Real hypersurfaces in the complex hyperbolic two-plane Grassmannians with commuting Ricci tensor, Internat. J. Math. 26 (2015) 1550008,
26 pp.
[6] S.Klein, Totally geodesic submanifolds in the complex quadric, Differential Geom. Appl. 26 (2008) 79-96.
[7] B.Smyth, Differential geometry of complex hypersurfaces, Ann. of Math. 85 (1967) 246-266.
[8] S.Kobayashi, K. Nomizu, Foundations of Differential Geometry, Vol. II, A Wiley-Interscience Publ., Wiley Classics Library Ed., 1996.
[9] H. Reckziegel, On the geometry of the complex quadric, in: Geometry and Topology of Submanifolds VIII (Brussels/Nordfjordeid 1995), World Sci.
Publ., River Edge, NJ, 1995, pp. 302-315.
[10] M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc. 296 (1986) 137-149.
[11] M. Kimura, Some real hypersurfaces of a complex projective space, Saitama Math. J. 5 (1987) 1-5.
[12] ].D. Pérez, Commutativity of Cho and structure Jacobi operators of a real hypersurface in a complex projective space, Ann. Mat. Pure Appl. 194 (2015)
1781-1794.
[13] ].D. Pérez, Y.J. Suh, Real hypersurfaces of quaternionic projective space satisfying Vy,R = 0, Differential Geom. Appl. 7 (1997) 211-217.
[14] ].D.Pérez,Y.J. Suh, Certain conditions on the Ricci tensor of real hypersurfaces in quaternionic projective space, Acta Math. Hungar. 91 (2001) 343-356.
[15] Y.J. Suh, Real hypersurfaces of type B in complex two-plane Grassmannians, Monatsh. Math. 147 (2006) 337-355.
[16] YJ. Suh, C. Woo, Real hypersurfaces in complex hyperbolic two-plane Grassmannians with parallel Ricci tensor, Math. Nachr. 55 (2014) 1524-1529.
[17] Y.J. Suh, Real hypersurfaces in the complex quadric with parallel Ricci tensor, Adv. Math. 281 (2015) 886-905.
[18] Y.J. Suh, D.H. Hwang, Real hypersurfaces in the complex quadric with commuting Ricci tensor, Sci. China Math. 59 (2016) 2185-2198.
[19] Y.J. Suh, Real hypersurfaces in the complex quadric with Reeb parallel shape operator, Internat. J. Math. 25 (2014) 1450059, 17 pp.
[20] Y.J. Suh, Real hypersurfaces in the complex quadric with harmonic curvature, J. Math. Pures Appl. 106 (2016) 393-410.


http://refhub.elsevier.com/S0393-0440(17)30134-1/sb1
http://refhub.elsevier.com/S0393-0440(17)30134-1/sb1
http://refhub.elsevier.com/S0393-0440(17)30134-1/sb1
http://refhub.elsevier.com/S0393-0440(17)30134-1/sb2
http://refhub.elsevier.com/S0393-0440(17)30134-1/sb3
http://refhub.elsevier.com/S0393-0440(17)30134-1/sb4
http://refhub.elsevier.com/S0393-0440(17)30134-1/sb5
http://refhub.elsevier.com/S0393-0440(17)30134-1/sb5
http://refhub.elsevier.com/S0393-0440(17)30134-1/sb5
http://refhub.elsevier.com/S0393-0440(17)30134-1/sb6
http://refhub.elsevier.com/S0393-0440(17)30134-1/sb7
http://refhub.elsevier.com/S0393-0440(17)30134-1/sb8
http://refhub.elsevier.com/S0393-0440(17)30134-1/sb9
http://refhub.elsevier.com/S0393-0440(17)30134-1/sb9
http://refhub.elsevier.com/S0393-0440(17)30134-1/sb9
http://refhub.elsevier.com/S0393-0440(17)30134-1/sb10
http://refhub.elsevier.com/S0393-0440(17)30134-1/sb11
http://refhub.elsevier.com/S0393-0440(17)30134-1/sb12
http://refhub.elsevier.com/S0393-0440(17)30134-1/sb12
http://refhub.elsevier.com/S0393-0440(17)30134-1/sb12
http://refhub.elsevier.com/S0393-0440(17)30134-1/sb13
http://refhub.elsevier.com/S0393-0440(17)30134-1/sb14
http://refhub.elsevier.com/S0393-0440(17)30134-1/sb15
http://refhub.elsevier.com/S0393-0440(17)30134-1/sb16
http://refhub.elsevier.com/S0393-0440(17)30134-1/sb17
http://refhub.elsevier.com/S0393-0440(17)30134-1/sb18
http://refhub.elsevier.com/S0393-0440(17)30134-1/sb19
http://refhub.elsevier.com/S0393-0440(17)30134-1/sb20

	Real hypersurfaces in the complex quadric with Reeb invariant Ricci tensor
	Introduction
	The complex quadric
	Some general equations
	Reeb invariance and a key lemma
	Proof of main theorem with A-isotropic
	Proof of main theorem with A-principal
	Acknowledgments
	References


